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In this paper we describe a new method for discovering recurrent patterns in a corpus of segmented melodies.
Elements of patterns in this scheme do not represent individual notes but rather represent melodic segments

that are sequences of notes. A new knowledge representation for segmental patterns is designed, and a pattern
discovery algorithm based on suffix trees is used to discover segmental patterns in large corpora. The method is
applied to a large collection of melodies, including Nova Scotia folk songs, Bach chorale melodies, and sections
from the Essen folk song database. Patterns are ranked using a statistical significance method that integrates
pattern self-overlap, length, and frequency in a corpus into a single measure. A musical interpretation of some
of the statistically significant discovered patterns is presented.
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1. Introduction
The discovery of recurrent and significant patterns
in data is a fundamental form of data mining. In
music, there are many motivations for the discovery
of patterns. In the analysis of a single piece, repeated
patterns may reveal the construction of the piece in
terms of repetitive basic structures such as themes,
motives, harmonies, or pitch class sets. The discovery
of recurrent patterns that occur across many pieces in
a specific musical style can yield patterns that may be
used in stylistic analysis, synthesis, and classification
of new pieces in the style. Patterns also contribute to
the definition of large-scale musical form.
Modern computational methods for pattern discov-

ery in music have been used to reveal recurrent pat-
terns in a single or small number of pieces (Rolland
and Ganascia 2000, Hsu et al. 2001, Cambouropoulos
1998, Cope 1991, Lartillot 2004) and large stylistic
corpora (Conklin and Anagnostopoulou 2001). Their
applicability and success depend on the way pieces
of music are structured and on the formal language
used to describe musical patterns.
Current methods for pattern discovery, while use-

ful for finding melodic patterns, lack the ability to
represent patterns whose elements refer not simply to
notes but also to melodic segments that are sequences
of notes. Such segmental patterns can be used to rep-
resent patterns of recurrent segment types discov-
ered within a corpus. In this paper, the third of
a series on pattern representation and discovery in

music, we demonstrate that a knowledge represen-
tation method used previously for melodic (Conklin
and Anagnostopoulou 2001) and vertical (Conklin
2002) pattern discovery can naturally be used for seg-
mental patterns.
One way to evaluate a proposed pattern represen-

tation is to ask whether pieces in a large and diverse
melodic corpus have significantly recurrent patterns.
The pattern discovery algorithm used here, which is
based on a suffix tree algorithm, has been applied pre-
viously to the discovery of melodic patterns (Conklin
and Anagnostopoulou 2001). Here it is applied to seg-
mental patterns, using a generalized knowledge rep-
resentation and an improved method for computing
the statistical significance of patterns.
The method is applied to a large collection of

melodic data sets, including Nova Scotia folk songs
(Creighton 1966), Bach chorale melodies, and sec-
tions from the Essen folk song database (Schaffrath
1995). Many statistically significant patterns, span-
ning across musical styles, have been discovered, and
a musical interpretation of a few of these patterns is
discussed.

2. Methods
Music analysis is concerned with understanding
pieces of music by identifying their constituent struc-
tures and how these are transformed as a piece
unfolds in time. Analytic decisions are based on dif-
ferent properties of a piece, and quite often analysts
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will concentrate on only a few properties at a time,
such as rhythm, melodic contour, or cadential struc-
ture. An analysis will depend on the way in which a
piece is segmented or structured and on the proper-
ties chosen to represent its constituent structures.
The approach for segmental pattern representa-

tion described in this paper is partially motivated
by the technique of semiotic analysis (Nattiez 1975),
where similar segments are grouped together into
classes according to their shared properties (paradig-
matic analysis) and a piece is viewed as a sequence
of paradigmatic class labels (syntagmatic analysis). The
topic of formal paradigmatic analysis of music has
also been approached using automated clustering
methods (Anagnostopoulou and Westermann 1997,
Cambouropoulos 1998, Höthker et al. 2001, Grilo et al.
2001). A difference between the present approach and
previous investigations into computational paradig-
matic analysis is in the technique used to represent
segment classes. In our approach, rather than adjust-
ing the distance thresholds and other parameters of a
clustering procedure, the analyst focuses on adjusting
the level of abstraction used to describe segments so
that those posited to be in the same class are equiva-
lent in the representation.
To illustrate the basic idea of semiotic analysis, Fig-

ure 1 presents a fragment of a popular Scottish tradi-
tional melody. Although other segmentations of this
melody are possible, for illustration purposes we have
chosen to structure the melody as four two-bar seg-
ments, each with twelve beats. An analyst approach-
ing this fragment using semiotic analysis may decide
to group segments 1 and 3 together by virtue of their
equivalent rhythmic values and melodic contour. Seg-
ments 2 and 4, on the other hand, are similar but
not equivalent in either of these dimensions, and their
grouping will depend on their measured similarity or
on their equivalence with respect to more abstract fea-
tures. Thus the overall analysis of this melodic frag-
ment might be written as ABAC or ABAB, where
A, B, and C are paradigmatic class labels.
In this research, the representation for segmental

patterns is used as a basis for the discovery of recur-
rent sequences of segments in a corpus.

2.1. Music Objects and Structuring of Pieces
To encode pieces of music, we use an algebraic data
type that permits a hierarchical structuring of a piece
of music. A music object is a note (type Note), or
(recursively) a sequence (type Seq), or simultaneity

Figure 1 A Fragment of the Scottish Traditional Melody All The Blue Bonnets Are Over The Border Grouped into Four Segments

(type Sim) of music objects joined or layered together.
Music objects have basic attributes: for example, all
Note music objects have a pitch. When a music object
is joined or layered as a component of another music
object, it acquires an onset time, and becomes an event.
All music objects have a duration: for sequences and
simultaneities the duration is computed by inspecting
the durations of component events. For this work we
measure duration in terms of 96th note ticks: this per-
mits a convenient integer encoding of various triplet
durations (e.g., a note in a triplet of eighth notes has
duration eight; a note in a triplet of sixteenth notes
has duration four). In this paper, we consider only
those regular sequences where all events within the
sequence are of the same type. The type of a regular
sequence of events of type X is denoted Seq!X". For
example, a sequence of notes has type Seq(Note), and
a segmented melody has type Seq(Seq(Note)). A Seq
of n music objects, or more generally an ordered
sequence of n items, can be written as #e1$ % % % $ en& and
will sometimes be abbreviated as en.

2.2. Knowledge Representation
A piece of music is described using music objects such
as notes, sequences, and simultaneities. The proper-
ties of these objects—properties at a higher level of
abstraction than the basic musical surface—can be
represented and inferred using the viewpoints knowl-
edge representation method.

2.2.1. Viewpoints. A viewpoint is a partial func-
tion that computes attribute values or viewpoint ele-
ments for events in a sequence. In music these values
represent properties of musical events. More pre-
cisely, for a viewpoint ' and sequence of events en,
if '!en"= v, then the event en is inferred to have the
attribute value v in the context of the sequence ēn−1.
Since viewpoints are functions of an event and its con-
textual sequence, they can compute attributes repre-
senting relations between an event and any number of
events in the context. A viewpoint is a partial rather
than a total function, meaning that it can be undefined
for some events in sequence; in this case it returns
the special value ⊥. For example, a melodic interval
viewpoint will be undefined for the first event in a
sequence of notes.
The top part of Table 1 shows the formal schema

for viewpoints. The domain of a viewpoint is always of
the form Seq!X", where X is a variable that can refer
to any type of music object. A viewpoint ' computes
attribute values in the set #'& (called the range of the
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Table 1 Abstract Syntax and Informal Semantics of the Viewpoints
Knowledge Representation Scheme for Music

Viewpoint function type Description

! " Seq#X $→ %! & General viewpoint schema

contour: Seq(Note)→ '−(=(+) Melodic contour
pcint: Seq(Note)→ '0( * * * (11) Pitch class interval
intref: Seq(Note)→ '0( * * * (11) Pitch class interval from

a reference pitch
beats: Seq(Seq(Note))→!+ Beats in segment
shape: Seq(Seq(Note))→" Segment shape type

link#!1( !2$" Seq#X $→ %!1&× %!2& Linking two viewpoints with
domain Seq#X $

f " Seq#X $→# f is a Boolean viewpoint, returning
true or false

select#! ( f $" Seq#X $→ %! & The ! -viewpoint element of an event
if f is true

ratio#! $" Seq#X $→$ The ratio of two ! -viewpoint elements
new#! $" Seq#X $→# True when the ! -viewpoint element

changes

lift#! $: Seq(Seq#X $)→ %! &∗ The viewpoint sequence for a segment
pair#! $: Seq(Seq#X $)→%#%! &$ The set of all ! -relations between

two segments
set#! $: Seq(Seq#X $)→%#%! &$ The set of ! -viewpoint elements

occurring in a segment
g" Seq#X $→ X g selects an event from a sequence
thread#! ( g$: Seq(Seq#X $)→ %! & Thread over g-selected events

in segments

viewpoint) for events of type X. A viewpoint with
domain Seq(Note) is called a melodic viewpoint, while
a viewpoint with domain Seq(Seq(Note)) is called a
segmental viewpoint. Although not discussed further in
this paper, a viewpoint with domain Seq(Sim(Note))
is called a vertical viewpoint (Conklin 2002).
In addition to describing individual events, for

knowledge representation and pattern discovery in
music it is necessary to describe a complete piece of
music by a sequence of event attributes. A '-viewpoint
sequence is simply the successive application of ' to
each of the prefixes of a sequence of events en:

#'!ē1"$ % % % $ '!en"& (1)

with the constraint that no ⊥ (undefined) elements
are present in the viewpoint sequence.

2.2.2. Primitive Viewpoints. Viewpoints can be
further categorized as being either primitive or compos-
ite. Primitive viewpoints are computed directly from
the musical surface and are described only in terms
of basic attributes (e.g., pitch, duration, onset time)
and mathematical functions. Some primitive melodic
and segmental viewpoints are presented in the sec-
ond part of Table 1 (!+ denotes the positive integers,
and " denotes the set of segment shape types):
contour the melodic contour between an event and

its preceding event;
pcint pitch class interval: the melodic interval in a

modulo 12 system;

intref interval from a reference pitch (the key of a
piece), in a modulo 12 system;
beats the number of beats in a segment, between

the downbeat of the segment until the end of the last
bar of the segment;
shape the overall shape of a segment computed

and classified into one of nine segment types using
the method of Huron (1996).

2.2.3. Composite Viewpoints and Constructors.
In contrast to primitive viewpoints, composite view-
points are created from other viewpoints using
higher-order functions called constructors; these are
functions that take viewpoints as arguments and
return new viewpoints. There are two kinds of con-
structors: type-preserving constructors that create a
viewpoint having the same domain as the argu-
ment(s) of the constructor and type-changing construc-
tors that create a viewpoint applying to a different
type of music object. For example, four type-preserv-
ing constructors found in the third part of Table 1
(# denotes the Booleans, and $ denotes the rational
numbers) are:
link!'1$ '2" computes a tuple comprising the sepa-

rate application of viewpoints '1 and '2;
select!'$ f " selects the '-viewpoint element if the

Boolean viewpoint f returns true;
ratio!'" computes the ratio of the '-viewpoint ele-

ments for an event and its preceding event. The view-
point ' must return integer values, and the ratio is
expressed as a rational number in normal form;
new!'" true if the '-viewpoint element of an event

has changed from that of its preceding event.
Four type-changing constructors that we have devel-
oped for constructing new segmental viewpoints from
melodic viewpoints can be found in the bottom part
of Table 1 (% denotes the power set function):
lift!'" computes the '-viewpoint sequence (1) for a

segment. In this way the whole '-viewpoint sequence
is treated as an attribute value of a segment;
pair!'" computes the set of all '-relations between

every event in one segment and every event in the
preceding segment. It is a generalization of Lewin’s
(1987) interval function, which computes the frequency
of occurrence of every pitch class interval between the
notes in two segments;
set!'" computes the set of '-viewpoint elements

occurring in a segment (in contrast to lift!'", which
computes a sequence of '-viewpoint elements);
thread!'$g" computes the '-relation between

events selected from segments using the function g.
Selected events from successive segments together
form a new event sequence, over which the viewpoint
' computes viewpoint elements.
Viewpoint constructors can be applied to both primi-
tive and composite viewpoints. This means that from
a given set of primitive viewpoints and a repertoire
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Viewpoint

pitch
duration

contour

pcint

intref

select(contour, new(contour))

ratio(duration)

new(contour)

beats

shape

lift(contour)

lift(select(contour, new(contour)))

pair(pcint)

set(intref)

thread(pcint, last)

thread(contour, highest)

ratio(beats)

link(beats, thread(pcint, last))

Viewpoint sequence

[72, 71, 69, 67, 67, 69, 71, 72, 74, 72, 71, 69, 71, 72, 69, 67]
[24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 12, 12, 48, 24]

[–, –, –, =, +, +, +, +, –, –, –, +, +, –, –]

[11, 10, 10, 0, 2, 2, 1, 2, 10, 11, 10, 2, 1, 9, 10]

[0, 11, 9, 7, 7, 9, 11, 0, 2, 0, 11, 9, 11, 0, 9, 7]

[–, =, +, –, +, –]

[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1/2, 1, 4, 1/2]

[1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0]

[4, 4, 8]

[descending, ascending, descending]

[[–, –, –], [+, +, +], [–, –, –, +, +, –, –]]

[[–], [+], [–, +, –]]

[{0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 11}, {0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 11}]

[{0, 7, 9, 11}, {0, 7, 9, 11}, {0, 2, 7, 9, 11}]

[5, 7]

[=, +]

[1, 2]

[<4, 5>, <8, 7>]

Figure 2 Examples of Viewpoint Sequences for the First Three Phrases of a Bach Chorale Melody (BWV 255)

of viewpoint constructors it is possible to construct
a very large number of new viewpoints to describe
music objects.

2.2.4. A Music Example. As an illustration of the
viewpoint representation for music, Figure 2 shows
some primitive and composite melodic and segmen-
tal viewpoint sequences for a three-phrase melodic
fragment. The top half of Figure 2 shows some
melodic viewpoints, each viewing the fragment as a
Seq(Note) object. The bottom half shows some seg-
mental viewpoints, each viewing the fragment as a
Seq(Seq(Note)) object, segmented on phrase bound-
aries. The melodic and segmental viewpoints have
been further subdivided into primitive and compos-
ite viewpoints. All notes in the melody have the basic
attributes of pitch (represented here by MIDI note
number) and duration (measured in 96th note ticks).
The pcint viewpoint measures the melodic interval
modulo 12, hence for the second note, the pitch
class interval is !71 − 72"mod12 = 11. The select(% % %)
viewpoint shows that the contour of the melody
changes direction six times. Note that for several
segmental viewpoints there are only two elements
in the viewpoint sequence. For example, the first
thread!pcint$ last" element in the sequence is five: the
first segment has no previous event and, therefore, its
viewpoint element is undefined and does not appear
in the viewpoint sequence. A similar phenomenon

can be seen for the primitive melodic viewpoints pcint
and contour and for all composite melodic viewpoints
in Figure 2.
A few points can be made regarding the example

segmental viewpoint sequences. The beats viewpoint
shows the number of beats in each of the three seg-
ments, and the shape viewpoint their broad shape
class. A more general description of beats is given
by the ratio(beats) viewpoint sequence: two segments
with the same number of beats (ratio: 1) followed by
one twice as long (ratio: 2). A more specific descrip-
tion of melodic shape is given by the lift(select(% % %))
viewpoint which, for notes in a segment, selects the
contour value only where the contour changes. The
pair(pcint) elements contain no interval of six: there
is no tritone (6 semitones) between any two notes
in a segment or its preceding segment. The first and
second segments have the same set(intref) element,
and there is no third (interval: 4) or fourth (inter-
val: 5) scale degree used in any of the three segments.
The link(% % %) viewpoint is a simple example of link-
ing together two viewpoints; note that because one of
its component viewpoints thread!pcint$ last" is unde-
fined for the first segment, the composite linked view-
point is also undefined for the first segment.

2.3. Patterns and Pattern Statistics
A pattern is a viewpoint sequence fragment encoun-
tered in a corpus of pieces. Whereas music objects
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and viewpoint sequences represent individual pieces,
patterns represent abstractions, or concepts. A pattern
occurs in a piece (the piece is an instance of the pat-
tern) if it is contained in the viewpoint sequence for
the piece. A melodic pattern is one based on a melodic
viewpoint, whereas a segmental pattern is one based
on a segmental viewpoint.
The piece count of a pattern is the number of

pieces in which the pattern occurs. The total count
of a pattern is its total number of occurrences in
a corpus, including possibly overlapping repetitions
within a single piece. To evaluate patterns, a statistical
hypothesis-testing method is employed. The p-value
of a pattern with total count k is the probability that
it occurs k or more times in a corpus of the same
size; lower p-values indicating more surprising pat-
terns. To compute p-values, it is necessary to use a
null model; this model is presumed to generate “ran-
dom” music unlike that of the corpus. The null model
we use is a unigram model with method C smoothing
(Jurafsky and Martin 2000), constructed from counts
of viewpoint elements in the corpus. Smoothing—
the allocation of some probability space to elements
that are not encountered in the corpus—is necessary
because element counts for complex composite view-
points may be sparse and unreliable. The probability
of a pattern is its probability of occurrence in a view-
point sequence, generated by the null model, of the
same length as the pattern.
To compute p-values with the null model, it is

important to consider the effect of self-overlap in pat-
terns. Patterns with a relatively high self-overlap will
tend to be generated in “clumps,” and it will not be as
surprising to see more occurrences than for a pattern
with a similar probability but relatively low self-over-
lap. To quantify the amount of self-overlap, the period
of a pattern P is defined to be the length of its shortest
subpattern Q such that P is a prefix of Qm for some
integer m> 0 (Apostolico and Crochemore 2002). Pat-
terns with a high self-overlap have a low period, and
conversely those with no self-overlap have a period
equal to their length.
By simulation on data generated by the null model,

we have determined that the distribution of pattern
counts can be fit by a normal distribution with a stan-
dard deviation that depends on the pattern length

[{0, 2, 4, 5, 7, 9}, {0, 2, 4, 5, 7, 9, 11}, {0, 2, 4, 5, 7, 9}, {0, 2, 4, 5, 7, 9, 11}]

Figure 3 Two Pieces from the Essen Folk Song Database That Are Instances of a set(intref) Pattern

and period. For a pattern with probability p, the
expected total count ( is np where n is the total length
of all '-viewpoint sequences from the corpus. The
standard deviation ) of the total count is

√

(!1− p"l/q (2)

where l is the length of the pattern and q is the pat-
tern period: the fraction l/q is an adjustment factor
that quantifies the degree of self-overlap of the pat-
tern. As desired, the standard deviation (2) of the pat-
tern total count increases with the amount of pattern
self-overlap.
The z-score of a pattern is !k−("/) , and represents

the difference of the total count k from the expected
total count (, expressed in units of standard devia-
tion (2). The z-score can be used directly to rank pat-
terns, or if desired it can be converted to a p-value
using the standard normal distribution.
As an example of patterns and pattern statistics,

Figure 3 illustrates the Austrian folk song Muede
kehrt ein Wanderer zurueck nach seiner Heimat seiner
Liebe Glueck (Essen D1016) and the Swiss folk song
Muede kehrt ein Wandersmann zurueck nach der Heimat
sehnt sich seinen Blick (Essen D1005). The similarity
between the pieces is quite apparent, with very sim-
ilar rhythmic patterns, melodic contour and implied
harmonies, although there is not a basic melodic
property that is conserved over the span of the two
melodies. By mining a large collection of melodies
(see §3), a pattern for the set(intref) viewpoint was
discovered to be shared between these two pieces
(Figure 3). The pattern has length l = 4 and period
q = 2; when shifted to the right by two positions, it
can potentially occur again. For this viewpoint and
pattern, the total viewpoint sequence length is n =
5$955, the pattern probability is p = 1%31× 10−6, and
the pattern total count is k = 3. These values in the
expressions above yield a z-score of 24, indicating a
highly significant pattern.

2.4. Pattern Discovery Algorithm
The pattern discovery algorithm we employ reports,
for a specified viewpoint ' and p-value threshold,
all significant patterns discovered in a corpus. For a
specified viewpoint ' , the '-viewpoint sequence (1)
for every piece in the corpus is computed, and these
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sequences are used to build a suffix tree. The suffix
tree data structure is useful for efficient discovery of
common substrings in text processing and bioinfor-
matics applications (Gusfield 1997) and is generally
useful for many areas where data can be represented
as sequences.
Following the suffix tree construction process, the

tree is traversed to reveal all patterns with a total
count of at least two. The resulting list is filtered for
significant patterns, ordered by increasing p-value (or
equivalently, by decreasing z-score), and reported to
the analyst.

2.5. Piece Weighting
In any data analysis task it is important to avoid sam-
ple bias, or at the very least consider its effect on anal-
ysis results. In the data sets used in this study, there
are some pieces (particularly in the German kinder
songs) with extensive duplication of musical material.
Including highly similar pieces in the analysis corpus
will inflate some pattern counts and therefore over-
estimate their statistical significance. However, rather
than discard outright such pieces from the corpus, a
piece weighting scheme was devised whereby they
can be retained.
To weight pieces, it is assumed that a long se-

quence of identical intervals and durations indicates
not melodic similarity but rather identity (pos-
sibly transposed) of musical material. Therefore,
all significant melodic patterns for the viewpoint
link!pcint$duration", of length at least ten, were
found in the data set using the pattern discovery algo-
rithm. Then, for a cluster of c pieces covered by a
pattern, every piece in the cluster is given a weight of
1/c. If a piece is a member of more than one cluster,
its weight is set to the minimum of its cluster weights.
Piece weights need only be computed once and are

used during all subsequent pattern discovery runs to
reduce the total count k of some patterns. For exam-
ple, a pattern occurring once within each of three
pieces, two with weight 0%5, will receive a reduced
total count of k = 1+ 0%5+ 0%5 = 2 rather than k = 3.
The weighting procedure will correctly reduce the sig-
nificance of patterns arising mainly due to extensive
duplication of musical material. This is because the
total counts for these patterns will be reduced, and
the difference from their expected total count will be
smaller, leading to a lower z-score.

3. Results
To evaluate a general knowledge representation
scheme for music, two quite different approaches can
be taken. One approach could take a small number
of works, posited to be related, and find a descrip-
tion that reveals the relationships among their con-
stituent structures. The approach chosen for this work

Table 2 Melodic Data Sets Used, with (Unweighted) Total Piece,
Segment, and Note Counts: Mean Number of Segments Per
Piece and Notes Per Segment

Description Pieces Segments Notes Segs/Piece Notes/Seg

Nova Scotia folk 152 885 8(551 5.8 9*7
songs (CCARH)

Bach Chorale 185 1(141 9(227 6.2 8*1
melodies (CCARH)

Alsatian folk 91 558 4(496 6.1 8*1
songs (Essen)

Yugoslavian folk 119 303 2(691 2.5 8*9
songs (Essen)

Swiss folk 93 518 4(586 5.6 8*9
songs (Essen)

Austrian folk 102 604 5(132 5.9 8*5
songs (Essen)

German folk songs 213 1(201 8(393 5.6 7*0
(Essen) (kinder dataset)

Chinese folk songs 237 745 11(056 3.1 14*8
(Essen) (shanxi dataset)

Total 1(192 5(955 54(132

is a purely exploratory or data mining approach that
does not at the outset assume musical significance of
descriptions in the representation but rather attempts
to reveal this by inspection of recurrent patterns dis-
covered in a large corpus of music. In this section
we present some preliminary results from applying
the segmental pattern representation and discovery
method to a large corpus.
A collection of melodic data sets (Table 2) in the

kern format (Huron 1997) was used to develop and
test the method for segmental pattern discovery. Most
of these data sets are from the Essen folk song
database (Schaffrath 1995); in addition, we used 185
Bach chorale melodies and a collection of 152 Nova
Scotia folk songs (Creighton 1966), both available
from the Center for Computer Assisted Research in
the Humanities (CCARH: www.ccarh.org). Although
the Essen and Bach data sets have phrase boundaries
and fermatas annotated, the Nova Scotia folk song
encodings lack these markings. For this study, phrase
boundaries were manually added to the Nova Scotia
folk songs by comparing the score data with the lyrics
and entering a phrase boundary at the end of every
line of lyrics. The corpus comprises 1,192 pieces and
5,955 segments; although the complete Essen database
has many more pieces, we have decided to work ini-
tially with this more compact corpus.
The pooling of such varied data sets may seem

not ideal for a pattern discovery task; however, all
of the melodies belong to a much broader musical
style of tunes to be sung by both experts and non-
experts. The melodies are highly tonal, with clear
phrase boundaries, few passing modulations, and
most importantly, comfortable melodic lines with eas-
ily sung leaps, simple rhythmic structures, and con-
fined register. Chinese folk songs are also tonal, since
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the pentatonic scale used can be thought of as a fur-
ther restriction of the Western diatonic scale. Our
results suggest that the segmental pattern approach
is general enough to reveal patterns across different
sub-styles and may therefore hint toward a more uni-
fied music theory of sung melodies.
To discover segmental patterns, pieces were first

converted from the kern representation into a
Seq(Seq(Note)) music object representation (§2.1),
segmented on annotated phrase boundaries. In pieces
containing repeats with two alternative endings, only
the second ending was chosen. The piece weighting
method (§2.5) was applied to the collection of pieces.
The pattern discovery algorithm (§2.4) was used to
discover recurrent segmental viewpoint patterns in
these data sets. Patterns for various viewpoints were
discovered in the large melodic data set and sorted
by decreasing z-score, as described in §2.3. A p-value
threshold of 0%01 was used; patterns with a p-value
above this threshold are not reported.
A few general properties of the pattern discovery

method were observed. First, some significant pat-
terns have many occurrences in the corpus: these are
patterns whose probabilities (§2.3) are quite high and
must therefore occur many times in the corpus in
order to achieve statistical significance. On the other
hand, some patterns are significant despite their low
total count in the corpus, because their probabili-
ties are quite low. The statistical significance mea-
sure therefore appropriately balances the conflicting
wishes for long patterns and frequent patterns. Sec-
ond, it was observed that a set of discovered pat-
terns often exhibited extensive subsumption; many
significant discovered patterns were fully contained
within other significant patterns in the set. How-
ever, experiments with filtering patterns by retaining
only the most general significant patterns were not
successful: the filtered output then tended to com-
prise mainly short patterns with many instances, yet
with weak statistical significance hovering around
the upper p-value threshold boundary. Therefore, the
complete list of all significant patterns is reported,
and an analyst can later decide on the appropriate
level of generality for chains of subsuming patterns.
The thread!contour$highest" viewpoint results in

Table 3 illustrate the two points above. This viewpoint
measures the melodic contour between the highest
events in adjacent segments. A total of 18 signifi-
cant patterns were discovered for this viewpoint: the
most significant was the pattern #+$−&, with a total
count of k = 663%0. This pattern has a simple musi-
cal interpretation: it covers three successive segments,
and the note with the highest pitch in the middle
segment is approached (contour value +) and left
(contour value −) by either a step or leap. As indi-
cated in Table 3, the pattern #−$+& is also signifi-
cant in the corpus. The five thread!contour$highest"

Table 3 Some Results of Segmental Pattern Discovery

Viewpoint Pattern k p z-Score

thread#contour(highest$ %+(−& 663*0 0*1 9
%−(+& 562*9 0*1 4

%+(−(+& 234*7 0*04 5
%+(−(+(−& 117*8 0*01 6

%−(+(−(+(−& 46*3 0*005 3
thread#pcint( last$ %5(7& 139*0 0*02 5

%7(5& 161*2 0*02 8
%5(7(5& 54*8 0*003 8

set(intref) %'0(2(4(7(9)( '0(2(4(7(9)& 133*0 0*005 14
pair(pcint) %'0(1(2(3(4(5(7(8(9(10), 66*9 0*003 14

'0(2(3(4(5(7(8(9(10(11)&

Note. The viewpoint, pattern, weighted total count k, pattern probability p,
and the pattern z-score are indicated.

patterns in Table 3 also illustrate a partial chain of
three subsumed patterns, ordered from general to
specific. Although the very general pattern #+$−&
has high probability, it has many instances to com-
pensate for this and receives the highest z-score. As
the subsumption chain is traversed from general to
specific, the pattern probabilities become lower, yet
the total count also falls. The z-score follows nei-
ther the pattern specificity nor the pattern probabil-
ity. This illustrates the complex relationship between
pattern probability, pattern total count, and pattern
significance.
The thread!pcint$ last" viewpoint is similar to

thread!contour$highest" in that it applies a speci-
fied viewpoint to selected notes of adjacent segments.
A total of 281 significant patterns were discovered
for this viewpoint. The three patterns presented in
Table 3 reflect in tonal terms the alternating melodic
motions of a perfect fifth up (interval: 7) and per-
fect fourth down (interval: 5). This is an expected
motion in melodic analysis, reflecting cadential struc-
ture, and is often an empirical rule for songwriting
or for melody completion in the various music theory
exams.
A number of very significant patterns were found

using the set(intref) viewpoint, which describes the
set of all intervals from the key of the piece. Table 3
shows one pattern discovered: each element of this
pattern refers to the five notes of a major penta-
tonic scale. The pattern thus represents two successive
phrases, both using only the notes from a pentatonic
scale. With only a few exceptions, the instances of this
pattern are from the Shanxi folktune section of the
Essen database. This illustrates the ability of the pat-
tern representation and discovery method to reveal
style-specific patterns within a corpus.
The pair(pcint) viewpoint compares a segment with

its predecessor, and collects all pitch class intervals
between all notes of each segment. The pattern pre-
sented in Table 3 therefore covers three successive
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segments; between the first two segments no inter-
val of 6 (called a tritone) or 11 is permitted, and
between the last two segments no interval of 1 or 6
may occur. Though we find highly statistically signif-
icant patterns for this pair(pcint) viewpoint, it is hard
to assess the musical validity of the discovered pat-
terns. This musical relationship between successive
segments would seem to be difficult for a listener to
detect, apart from perhaps noting the scale degrees
omitted from the various segments.

4. Discussion
This paper has presented an approach for the rep-
resentation and discovery of segmental patterns
in music using viewpoints. Melodic segments are
grouped together by virtue of their equivalent feature
encodings from a particular viewpoint of representa-
tion.
To reveal recurrent sequences of equivalence classes

of melodic segments, a pattern discovery method
was applied to a large collection of segmented folk
songs and Bach chorale melodies. For each pattern a
p-value, which takes into account pattern self-overlap,
is computed using a null model. Although having
high statistical significance, the instances of many pat-
terns found do not have an immediate or obvious
musical similarity and require careful analysis. This
mismatch between musical and statistical significance
is to be expected from a pattern ranking approach
that is purely statistical in nature.
Several avenues for future research into segmen-

tal patterns can be indicated. The topic of music
classification using predictive style-specific patterns—
those that occur predominately within pieces of a
single style—has been explored (Sawada and Satoh
2000) but not within the context of segmental pat-
terns. Predictive segmental patterns could be used,
for example, for the classification of folk songs into
stylistic categories or for generation of new melodies
in a style. Predictive segmental patterns, discovered
in an annotated corpus, could be used to guide the
segmentation of new unsegmented melodies.
A statistical significance method for evaluating seg-

mental patterns was used in this research to rank dis-
covered patterns. A desirable property of this method
is a new measure for melodic similarity: two pieces
are considered similar if they contain a common seg-
mental pattern with a low p-value. One can envision
music information retrieval applications of segmen-
tal patterns, based on pattern discovery and statistical
significance. For example, an analyst could express a
query in terms of a segmented melody and the signif-
icance of discovered patterns could be used to rank
the retrieved query results. In a related sense, this
similarity measure between pieces may allow a large

database to be clustered into related groups based on
shared segmental patterns.
Segmentation of melodies is a very subjective pro-

cess, and listeners will group notes into phrases in dif-
ferent ways. This work has relied on pre-segmented
melodies, annotated by a variety of different edi-
tors and schemes, and has not considered the issue
of alternative or optimal segmentations. An objective
computational approach to segmentation into phrases
could be applied, but if the segmentation was itself
based on repetition, this would introduce a problem-
atic circularity between score segmentation and pat-
tern discovery.
The method of mining a large music corpus pre-

sented here shares many similarities with the meth-
ods and objectives found in traditional music analysis.
Music analysis is founded on musical properties,
and different properties will give different analytical
results. This is why there are always many poten-
tial answers to the same music analysis problem. The
ambiguity in music analysis, where results depend on
the chosen music properties, is also reflected in the
work reported here, where the consideration of dif-
ferent segmental viewpoints would produce different
significant patterns. There is no optimal viewpoint
from which to look at music, and this repertoire of
segment descriptors, with simple mechanisms to con-
struct new ones, will be valuable for computational
music analysis.
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